GaN材料的特性與應用,GaN發展歷程及前景概要
上傳人:編輯:Tom 上傳時間: 2010-12-10 瀏覽次數: 1297 |
三、GaN材料生長
GaN材料的生長是在高溫下,通過TMGa分解出的Ga與NH3的化學反應實現的,其可逆的反應方程式為:
Ga+NH3=GaN+3/2H2
生長GaN需要一定的生長溫度,且需要一定的NH3分壓。人們通常采用的方法有常規MOCVD(包括APMOCVD、LPMOCVD)、等離子體增強MOCVD(PE—MOCVD)和電子回旋共振輔助MBE等。所需的溫度和NH3分壓依次減少。本工作采用的設備是AP—MOCVD,反應器為臥式,并經過特殊設計改裝。用國產的高純TMGa及NH3作為源程序材料,用DeZn作為P型摻雜源,用(0001)藍寶石與(111)硅作為襯底采用高頻感應加熱,以低阻硅作為發熱體,用高純H2作為MO源的攜帶氣體。用高純N2作為生長區的調節。用HALL測量、雙晶衍射以及室溫PL光譜作為GaN的質量表征。要想生長出完美的GaN,存在兩個關鍵性問題,一是如何能避免NH3和TMGa的強烈寄生反應,使兩反應物比較完全地沉積于藍寶石和Si襯底上,二是怎樣生長完美的單晶。為了實現第一個目的,設計了多種氣流模型和多種形式的反應器,最后終于摸索出獨特的反應器結構,通過調節器TMGa管道與襯底的距離,在襯底上生長出了GaN。同時為了確保GaN的質量及重復性,采用硅基座作為加熱體,防止了高溫下NH3和石墨在高溫下的劇烈反應。對于第二個問題,采用常規兩步生長法,經過高溫處理的藍寶石材料,在550℃,首先生長250A0左右的GaN緩沖層,而后在1050℃生長完美的GaN單晶材料。對于 Si襯底上生長GaN單晶,首先在1150℃生長AlN緩沖層,而后生長GaN結晶。生長該材料的典型條件如下:
NH3:3L/min
TMGa:20μmol/minV/Ⅲ=6500
N2:3~4L/min
H2:2<1L/min
人們普遍采用Mg作為摻雜劑生長P型GaN,然而將材料生長完畢后要在800℃左右和在N2的氣氛下進行高溫退火,才能實現P型摻雜。本實驗采用 Zn作摻雜劑,DeZ2n/TMGa=0.15,生長溫度為950℃,將高溫生長的GaN單晶隨爐降溫,Zn具有P型摻雜的能力,因此在本征濃度較低時,可望實現P型摻雜。
但是,MOCVD使用的Ga源是TMGa,也有副反應物產生,對GaN膜生長有害,而且,高溫下生長,雖然對膜生長有好處,但也容易造成擴散和多相膜的相分離。中村等人改進了MOCVD裝置,他們首先使用了TWO—FLOWMOCVD(雙束流MOCVD)技術,并應用此法作了大量的研究工作,取得成功。雙束流MOCVD生長示意圖如圖1所示。反應器中由一個H2+NH3+TMGa組成的主氣流,它以高速通過石英噴平行于襯底通入,另一路由H2+N2 形成輔氣流垂直噴向襯底表面,目的是改變主氣流的方向,使反應劑與襯底表面很好接觸。用這種方法直接在α—Al2O3基板(C面)生長的GaN膜,電子載流子濃度為1×1018/cm3,遷移率為200cm2/v·s,這是直接生長GaN膜的最好值。
四、GaN材料的應用
4.1GaN基新型電子器件

圖1:雙氣流MOCVD生長GaN裝置

圖2:GaN基器件與CaAs及SiC器件的性能比較

GaN材料系列具有低的熱產生率和高的擊穿電場,是研制高溫大功率電子器件和高頻微波器件的重要材料。目前,隨著 MBE技術在GaN材料應用中的進展和關鍵薄膜生長技術的突破,成功地生長出了GaN多種異質結構。用GaN材料制備出了金屬場效應晶體管(MESFET)、異質結場效應晶體管(HFET)、調制摻雜場效應晶體管(MODFET)等新型器件。調制摻雜的AlGaN/GaN結構具有高的電子遷移率(2000cm2/v·s)、高的飽和速度(1×107cm/s)、較低的介電常數,是制作微波器件的優先材料;GaN較寬的禁帶寬度(3.4eV) 及藍寶石等材料作襯底,散熱性能好,有利于器件在大功率條件下工作。圖2示出了GaN電子器件的性能與GaAs和SiCMESFET的比較,從圖中可以很好地看到GaN基電子器件具有很好的應用前景。
用戶名: 密碼: